Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504132

RESUMO

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Assuntos
Alcaloides , Sarcopenia , Humanos , Masculino , Camundongos , Animais , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envelhecimento , Músculo Esquelético/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo
2.
Chem Res Toxicol ; 37(2): 248-258, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38198686

RESUMO

Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD+) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress. Yet, the pyridone-derived nucleotides are largely under-represented in the literature. Here, we report the efficient synthesis of the series of ox-NAD and pyridone nucleotides and measure the abundance of ox-NAD in biological specimens using liquid chromatography coupled with mass spectrometry (LC-MS). Overall, we demonstrate that all three forms of PYR and ox-NAD are found in biospecimens at concentrations ranging from nanomolar to midmicromolar and that their presence affects the measurements of NAD(H) concentrations when standard biochemical redox-based assays are applied. Furthermore, we used liver extracts and 1H NMR spectrometry to demonstrate that each ox-NAD isomer can be metabolized to its respective PYR isomer. Together, these results suggest a need for a better understanding of ox-NAD in the context of human physiology since these species are endogenous mimics of NAD+, the key redox cofactor in metabolism and bioenergetics maintenance.


Assuntos
NAD , Nucleotídeos , Humanos , NAD/metabolismo , Nucleotídeos/metabolismo , Nucleosídeos/metabolismo , Metabolismo Energético , Piridonas
3.
Nutrients ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447389

RESUMO

Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.


Assuntos
NAD , Niacina , NAD/metabolismo , Niacinamida/metabolismo , Metaboloma , Oxirredução , Biomarcadores/metabolismo
4.
PLoS One ; 17(12): e0278516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472985

RESUMO

Dihydroxyacetone (DHA) is the active ingredient in sunless tanning products and a combustion product from e-juices in electronic cigarettes (e-cigarettes). DHA is rapidly absorbed in cells and tissues and incorporated into several metabolic pathways through its conversion to dihydroxyacetone phosphate (DHAP). Previous studies have shown DHA induces cell cycle arrest, reactive oxygen species, and mitochondrial dysfunction, though the extent of these effects is highly cell-type specific. Here, we investigate DHA exposure effects in the metabolically active, HepG3 (C3A) cell line. Metabolic and mitochondrial changes were evaluated by characterizing the effects of DHA in metabolic pathways and nutrient-sensing mechanisms through mTOR-specific signaling. We also examined cytotoxicity and investigated the cell death mechanism induced by DHA exposure in HepG3 cells. Millimolar doses of DHA were cytotoxic and suppressed glycolysis and oxidative phosphorylation pathways. Nutrient sensing through mTOR was altered at both short and long time points. Increased mitochondrial reactive oxygen species (ROS) and mitochondrial-specific injury induced cell cycle arrest and cell death through a non-classical apoptotic mechanism. Despite its carbohydrate nature, millimolar doses of DHA are toxic to liver cells and may pose a significant health risk when higher concentrations are absorbed through e-cigarettes or spray tanning.


Assuntos
Di-Hidroxiacetona , Sistemas Eletrônicos de Liberação de Nicotina , Di-Hidroxiacetona/farmacologia , Espécies Reativas de Oxigênio , Mitocôndrias , Fígado
5.
Cell Metab ; 34(12): 1947-1959.e5, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476934

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports microbial NAD synthesis. The microbiome converts host-derived nicotinamide into nicotinic acid, which is used for NAD synthesis in host tissues and maintains circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, we establish the capacity for circulating host micronutrients to feed the gut microbiome, and in turn be transformed in a manner that enhances host metabolic flexibility.


Assuntos
NAD , Niacina , Camundongos , Animais , Niacinamida/farmacologia , Mamíferos
6.
J Biol Chem ; 298(12): 102615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265580

RESUMO

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Assuntos
NAD , Purina-Núcleosídeo Fosforilase , Humanos , Camundongos , Animais , NAD/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Compostos de Piridínio , Mamíferos/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233167

RESUMO

Pyridone adenine dinucleotides (ox-NADs) are redox inactive derivatives of the enzyme cofactor and substrate nicotinamide adenine dinucleotide (NAD) that have a carbonyl group at the C2, C4, or C6 positions of the nicotinamide ring. These aberrant cofactor analogs accumulate in cells under stress and are potential inhibitors of enzymes that use NAD(H). We studied the conformational landscape of ox-NADs in solution using molecular dynamics simulations. Compared to NAD+ and NADH, 2-ox-NAD and 4-ox-NAD have an enhanced propensity for adopting the anti conformation of the pyridone ribose group, whereas 6-ox-NAD exhibits greater syn potential. Consequently, 2-ox-NAD and 4-ox-NAD have increased preference for folding into compact conformations, whereas 6-ox-NAD is more extended. ox-NADs have distinctive preferences for the orientation of the pyridone amide group, which are driven by intramolecular hydrogen bonding and steric interactions. These conformational preferences are compared to those of protein-bound NAD(H). Our results may help in identifying enzymes targeted by ox-NADs.


Assuntos
Simulação de Dinâmica Molecular , NAD , Adenina , Amidas , Dapsona/análogos & derivados , NAD/metabolismo , Niacinamida , Piridonas , Ribose
8.
Cancers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892832

RESUMO

Glioblastoma multiforme (GBM) is an incurable brain cancer with an average survival of approximately 15 months. Temozolomide (TMZ) is a DNA alkylating agent for the treatment of GBM. However, at least 50% of the patients treated with TMZ show poor response, primarily due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or due to defects in the mismatch repair (MMR) pathway. These resistance mechanisms are either somatic or arise in response to treatment, highlighting the need to uncover treatments to overcome resistance. We found that administration of the NAD+ precursor dihydronicotinamide riboside (NRH) to raise cellular NAD+ levels combined with PARG inhibition (PARGi) triggers hyperaccumulation of poly(ADP-ribose) (PAR), resulting from both DNA damage-induced and replication-stress-induced PARP1 activation. Here, we show that the NRH/PARGi combination enhances the cytotoxicity of TMZ. Specifically, NRH rapidly increases NAD+ levels in both TMZ-sensitive and TMZ-resistant GBM-derived cells and enhances the accumulation of PAR following TMZ treatment. Furthermore, NRH promotes hyperaccumulation of PAR in the presence of TMZ and PARGi. This combination strongly suppresses the cell growth of GBM cells depleted of MSH6 or cells expressing MGMT, suggesting that this regimen may improve the efficacy of TMZ to overcome treatment resistance in GBM.

9.
Nutrients ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807932

RESUMO

Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.


Assuntos
NAD , Niacinamida , Animais , Mamíferos , Camundongos , Niacinamida/análogos & derivados , Compostos de Piridínio
10.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630705

RESUMO

We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.


Assuntos
Niacina , Niacina/metabolismo , Riboflavina , Tiamina/análise
11.
Curr Protoc ; 2(4): e418, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35447016

RESUMO

This article contains a synthetic protocol for solvent-assisted mechanochemical synthesis of a nucleotide dimer. First, a dinucleoside phosphite is prepared by solvent-assisted mechanochemistry via the phosphoramidite method. Second, the dinucleoside phosphite is oxidized to form the dinucleotide under mechanochemical conditions. Finally, the dinucleotide is purified by column chromatography. Support protocols are also provided for preparing the acidic salts that can be utilized for phosphoramidite couplings and for demonstrating that the reaction occurs under mechanochemical conditions rather than as a result of solvent added for analysis. Mechanochemistry as applied to synthesis of dinucleotides is a recent development and it is anticipated that the principles in this protocol will be widely applicable to a range of nucleoside and ribonucleoside monomers. The advantages of mechanochemistry over traditional solution-phase chemistry are the simplicity of the procedure, improved hydrolytic stability, and elimination of the need to solubilize poorly soluble compounds. © 2022 Wiley Periodicals LLC. Basic Protocol: Solvent-assisted mechanochemical synthesis of a nucleotide dimer Supplementary Protocol 1: Synthesis of N-methylimidazolium triflate Supplementary Protocol 2: Synthesis of pyridinium trifluoroacetate Supplementary Protocol 3: Confirmation of the efficacy of mechanochemical conditions.


Assuntos
Nucleotídeos , Fosfitos , Nucleosídeos , Oligonucleotídeos , Polímeros/química , Solventes
12.
Chem Res Toxicol ; 35(4): 616-625, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324152

RESUMO

Dihydroxyacetone (DHA) is a major byproduct of e-cigarette combustion and is the active ingredient in sunless tanning products. Mounting evidence points to its damaging effects on cellular functions. While developing a simple synthetic route to monomeric [13C3]DHA for flux metabolic studies that compared DHA and glyceraldehyde (GA) metabolism, we uncovered that solid DHA ages upon storage and differences in the relative abundance of each of its isomer occur when reconstituted in an aqueous solution. While all three of the dimeric forms of DHA ultimately resolve to the ketone and hydrated forms of monomeric DHA once in water at room temperature, these species require hours rather than minutes to reach an equilibrium favoring the monomeric species. Consequently, when used in bolus or flux experiments, the relative abundance of each isomer and its effects at the time of application is dependent on the initial DHA isomeric composition and concentration, and time of equilibration in solution before use. Here, we make recommendations for the more consistent handling of DHA as we report conditions that ensure that DHA is present in its monomeric form while in solutions, conditions used in an isotopic tracing study that specifically compared monomeric DHA and GA metabolism in cells.


Assuntos
Di-Hidroxiacetona , Sistemas Eletrônicos de Liberação de Nicotina , Isomerismo , Soluções
13.
Front Immunol ; 13: 840246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281060

RESUMO

Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.


Assuntos
NAD , Niacinamida , Citocinas , Glicosídeos , Macrófagos/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fenótipo
14.
Commun Biol ; 4(1): 1420, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934174

RESUMO

Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tretinoína/metabolismo , Humanos
15.
Cell Rep ; 37(5): 109917, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731617

RESUMO

Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase ß (Polß) and XRCC1 to DNA lesion sites identifies a role for Polß in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polß's dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polß and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polß abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA de Neoplasias/metabolismo , NAD/metabolismo , Neoplasias/enzimologia , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Células A549 , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA de Neoplasias/genética , Humanos , Cinética , Microscopia Confocal , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Sirtuínas/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
16.
Nat Commun ; 12(1): 6767, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799586

RESUMO

Nicotinamide riboside (NR) is one of the orally bioavailable NAD+ precursors and has been demonstrated to exhibit beneficial effects against aging and aging-associated diseases. However, the metabolic pathway of NR in vivo is not yet fully understood. Here, we demonstrate that orally administered NR increases NAD+ level via two different pathways. In the early phase, NR was directly absorbed and contributed to NAD+ generation through the NR salvage pathway, while in the late phase, NR was hydrolyzed to nicotinamide (NAM) by bone marrow stromal cell antigen 1 (BST1), and was further metabolized by the gut microbiota to nicotinic acid, contributing to generate NAD+ through the Preiss-Handler pathway. Furthermore, we report BST1 has a base-exchange activity against both NR and nicotinic acid riboside (NAR) to generate NAR and NR, respectively, connecting amidated and deamidated pathways. Thus, we conclude that BST1 plays a dual role as glycohydrolase and base-exchange enzyme during oral NR supplementation.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Glicosídeo Hidrolases/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacocinética , Células A549 , ADP-Ribosil Ciclase/genética , Administração Oral , Envelhecimento/efeitos dos fármacos , Animais , Antígenos CD/genética , Suplementos Nutricionais , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Glicosídeo Hidrolases/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Niacina/metabolismo , Niacinamida/administração & dosagem , Niacinamida/metabolismo , Niacinamida/farmacocinética , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Compostos de Piridínio/administração & dosagem
17.
NAR Cancer ; 3(4): zcab044, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34806016

RESUMO

Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.

18.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638936

RESUMO

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Assuntos
Metaboloma , NAD/biossíntese , Plasma/metabolismo , Soro/metabolismo , Espectrometria de Massas em Tandem/métodos , Urina/fisiologia , Animais , Doadores de Sangue , Cromatografia Líquida/métodos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Monitorização Fisiológica/métodos , Oxirredução , Projetos Piloto , Plasma/química , Soro/química , Urina/química
19.
Cell Syst ; 12(12): 1160-1172.e4, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34559996

RESUMO

NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.


Assuntos
NAD , Niacinamida , Envelhecimento , Animais , Restrição Calórica , Camundongos , NAD/metabolismo , Niacinamida/metabolismo
20.
Biomolecules ; 11(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356669

RESUMO

It has recently been demonstrated that the rat poison vacor interferes with mammalian NAD metabolism, because it acts as a nicotinamide analog and is converted by enzymes of the NAD salvage pathway. Thereby, vacor is transformed into the NAD analog vacor adenine dinucleotide (VAD), a molecule that causes cell toxicity. Therefore, vacor may potentially be exploited to kill cancer cells. In this study, we have developed efficient enzymatic and chemical procedures to produce vacor analogs of NAD and nicotinamide riboside (NR). VAD was readily generated by a base-exchange reaction, replacing the nicotinamide moiety of NAD by vacor, catalyzed by Aplysia californica ADP ribosyl cyclase. Additionally, we present the chemical synthesis of the nucleoside version of vacor, vacor riboside (VR). Similar to the physiological NAD precursor, NR, VR was converted to the corresponding mononucleotide (VMN) by nicotinamide riboside kinases (NRKs). This conversion is quantitative and very efficient. Consequently, phosphorylation of VR by NRKs represents a valuable alternative to produce the vacor analog of NMN, compared to its generation from vacor by nicotinamide phosphoribosyltransferase (NamPT).


Assuntos
Antineoplásicos/síntese química , NAD/química , Niacinamida/análogos & derivados , Compostos de Fenilureia/química , Compostos de Piridínio/síntese química , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/metabolismo , Animais , Antineoplásicos/farmacologia , Aplysia/enzimologia , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Niacinamida/síntese química , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...